
©2010 Neal Glover Page 1 of 13

7300 Cody Court (972) 814-3441 Voice
Plano TX 75024-3837 USA (972) 208-9095 FAX
connect@ChannelScience.com

ChannelScience

 Detecting the Future of Data Storage SM

Fast Software BCH

Encoder and

Decoder
-FastBchEnDecR300-

A ChannelScience White Paper

Written by

Neal Glover
October 1, 2010

©2010 Neal Glover Page 2 of 13

ChannelScience

Table of Contents
1. Executive Summary ... 2
2. Introduction ... 3
3. Binary BCH Codes .. 3
4. Design .. 7
5. Average Error Correction Time ... 9
6. Average Throughput .. 10
7. Measuring Throughput Times ... 11
8. Hybrid Binary BCH Decoders ... 11
9. Managing Errors .. 12
10. Conclusions ... 12
11. References ... 13
About the Author ... 13

1. Executive Summary

Software encoding and decoding of binary BCH codes is possible for a range of throughput

requirements. By carefully selecting the strategy and algorithms for encoding and decoding, this

range can be extended. Such an implementation has been posted on the ChannelScience web site,

www.ChannelScience.com, as a Visual Studio “C” project (FastBchEnDecR300). The

implementation of this software and its capabilities are discussed herein.

Disclaimer
The information in this white paper is provided as is. The author and ChannelScience assume no responsibility or liability of any kind for the accuracy

or completeness of the information, the way in which the information is used, its fitness for any particular task, or for any direct or consequential
damages resulting from its use. The trademarks mentioned herein are the property of their respective owners

http://www.channerscience.com/

©2010 Neal Glover Page 3 of 13

ChannelScience

2. Introduction

The purpose of this document is to give an overview of the fast

encoder-decoder software “FastBchEnDecR300”. And also to

convey at a high level some insight into the binary BCH codes and

the classical algorithms for encoding and decoding them. For

detailed information on encoding and decoding algorithms monitor

the www.ChannelScience.com web site for new postings.

“FastBchEnDecR300” is a flexible binary BCH code encoder and

decoder. It supports most binary BCH codes of practical interest. It

supports “m” of GF(2^m) from six to sixteen and it support “t”, the

maximum number of errors correctable by the code, from one to

fourteen. The “C” project can be found at

www.ChannelScience.com.

The program can be launched by double clicking the “exe” file that

is part of the “C” project. All parameters and options are entered at

the keyboard. The program prompts for all inputs and provides

information to help with the entry of parameters and the selection of

options. It should be possible to double click the “exe” file and use

the program without having to refer to the source code.

The source code listing should have enough comments to enable an

experienced programmer to use the functions as a design reference.

3. Binary BCH Codes
Binary BCH codes are random bit error correcting codes. The

coefficients of the codeword polynomial are from the finite field of

two elements GF(2), but the computation used by the error

correction algorithms is performed over a larger finite field,

GF(2^m) . The code generator polynomial for a binary BCH code is

the least common multiple of a set of minimum polynomials. Two

of the parameters for a binary BCH code are “m” and “t”. The “m”

parameter is “m” of GF(2^m) and it is determined by the number of

data bits that must be supported by the code. The “t” parameter is

the maximum number of bit errors that are to be correctable by the

code. Binary BCH codes are generally preferred over Reed-

Solomon codes when the errors seen by the code are random bit

errors.

Flexible
Encoder

and
Decoder

Binary BCH
Preferred if
Bit Errors

http://www.channelscience.com/
http://www.channelscience.com/

©2010 Neal Glover Page 4 of 13

ChannelScience

The classic encoding of a binary BCH code is accomplished with a

bit-serial shift register similar to the simple shift register shown in

Figure 1.

Figure 1

In the encoder circuit of Figure 1 the ic (0 or 1) are coefficients of

the code generator polynomial. On encode the Redun_Time signal

is initially low and the circuit pre-multiplies the data polynomial by

x
n-k

 and divides by g(x), the code generator polynomial. When the

Redun_Time signal goes high the remainder (redundancy) is output

behind data.

©2010 Neal Glover Page 5 of 13

ChannelScience

Classical decoding of binary BCH codes is illustrated in Figure 2.

Figure 2

Three steps are required. The first step is syndrome computation.

The second step is the computation of an error locator polynomial.

This step is accomplished with an algorithm such as the Berlekamp-

Massey algorithm or Euclids algorithm. The third step finds the

roots of the error locator polynomial. The classical algorithm for

the root finding step is the Chien Search, but other root finding

algorithms exist.

Equation (1) is the equation for syndrome computation. There are

several methods for implementing this equation. Each is a trade off

between resources and speed.

Three
Steps to
Decode

©2010 Neal Glover Page 6 of 13

ChannelScience

Algorithm 1 shows pseudo code for one version of the classical

Berlekamp-Massey algorithm for binary BCH codes.

Algorithm 1

©2010 Neal Glover Page 7 of 13

ChannelScience

Algorithm 2 shows one version of the classical Chien search

algorithm.

 Algorithm 2

4. Design
The FastBchEnDecR300 software incorporates several features that

increase throughput by increasing the speed of encoding and

decoding. Encoding speed is increased by building the binary

redundancy vector in the bits of a set of 32 bit words to minimize

the number of operations. Encoding speed is further increased by

processing eight data bits at a time. The software that accomplishes

this performs a function equivalent to that performed by a parallel

hardware shift register. A large encode table facilitates this process.

Shifting the current estimate of the binary redundancy vector by

eight bits and XORing with it one vector (one set of 32-bit words)

from the encode table accomplishes the equivalent of eight shifts of

a bit-serial hardware shift register or one shift of an eight-bit parallel

hardware shift register.

Decoding speed is increased by first computing a remainder and

then if the remainder is nonzero, computing syndromes from the

remainder. The remainder is computed in the same way that the

Faster
Encoding and

Decoding

For Speed
Compute a
Remainder

First

©2010 Neal Glover Page 8 of 13

ChannelScience

redundancy is computed for encoding. Eight data bits are processed

at a time and the same large encode table is used to emulate the

action of a parallel hardware shift register. The fast computation of

a remainder is essential for achieving significant throughput for the

error free case.

On decode, if the remainder is nonzero, syndromes are computed,

then an error locator polynomial is computed and its roots are found.

One of the techniques used by the software to speed up syndrome

computation is computing even syndromes from odd ones This is

not possible for all codes but it is possible for a binary BCH code.

The Chien Search is used for root finding and its speed is increased

by working with the logs of coefficients of the error locator

polynomial, by avoiding “mod” operations, and by dividing down

the error locator polynomial each time a root is found. Speed is also

increased by exiting the Chien search when there are only a few

roots left to find. The exit occurs when the degree of the error

locator polynomial reaches four for even “m” and when the degree

reaches two for odd “m”. After the exit, special algorithms are used

to find the remaining roots.

Speed is further increased by unrolling (straight line coding) the

tightest loop. When a loop is unrolled the contents of the loop are

replicated to eliminate loop overhead. If the number of times the

body of the loop is executed changes dynamically, the code

branches down into the replications to achieve the equivalent of

looping the loop body the correct number of times.

Consider the example of unrolled code in Algorithm 3. It

evaluates ()X at k using Horner’s method.

Algorithm 3

Unroll Chien
Search Loop

for Speed

Divide
Down for

Speed

©2010 Neal Glover Page 9 of 13

ChannelScience

At the end of the unrolled loop, y contains σ(x) evaluated at α
k
.

One additional Chien search speedup is used. If the error locator

polynomial has no zero coefficients then a test for zero is not

performed on each coefficient at each step of the Chien search. The

test to determine if there are any zero coefficients in the error

locator polynomial is performed initially and after each divide down

operation.

Future new releases of the software will be posted at

www.ChannelScience.com that incorporate significant new

speedups for software encoding and decoding. One of the new

speedups will significantly increase the speed of root finding for

long codes when there are more than a few errors. When more that

a few errors exist root finding is a major contributor to decode time.

5. Average Error Correction Time
In most applications few errors are more likely than many. And if

errors are random and the probability that a bit is in error is the same

for all bits then it would be very rare to have, in a sector, the

maximum number of errors supported by the error correcting code.

In most applications we will see mostly error free sectors and a few

sectors with one error and fewer still sectors with two errors and so

on. It will be very rare to see the maximum number of errors. So in

most cases the error free decode time has the most influence on

average decode time.

Lets put this in perspective with an example. If we are using a

binary BCH code and we have 1024 data bytes in each sector and

t=14 and m=14 then there would be about 8388 bits in each

codeword. If we want our uncorrectable error rate to be less than

1.E-15 (uncorrectable sectors per bit) then for our given parameters

the raw error rate must be less than 1.5152 E-4 (bit errors per bit).

Assume that this is precisely the raw error rate, then the probability

for each number of errors (0 to 14) in a sector is given in column 1

of Table 1 (units are events per sector). Column 2 lists, for the

parameters given above, the decode time in seconds for a 2.67 GHz

i7 920 processor. Column 3 lists the decode times normalized to the

decode time for the zero error case. Now we can multiply

frequency of occurrence (column 1) times decode time, normalized

to the time to decode the zero error case (column 3), for each

number of errors to get the contribution of each to normalized

average decode time. The results are given in column 4. From

Error Free Decode
Time Dominates
Average Decode

Time

http://www.channelscience.com/

©2010 Neal Glover Page 10 of 13

ChannelScience

column 4 it can be seen that, for this example, the zero error case is

the largest contributor to average decode time. The next largest

contributor is the one error case and so on. The sum of these

contributions (1.3545) is the average decode time normalized to the

time to decode the zero error case. So, for this example, the average

decode time is only about 35% higher than the time to decode the

zero error case.

 Table 1

Probability of

given number

of errors in a

sector

Decode time in

seconds

Normalized

decode time

Contribution

to

Normalized

average decode

time
0 -- 7.1946e-001

1 -- 3.6286e-001

2 -- 1.3624e-001

3 -- 4.0239e-002

4 -- 9.7427e-003

5 -- 1.9934e-003

6 -- 3.5263e-004

7 -- 5.4895e-005

8 -- 7.6259e-006

9 -- 9.5612e-007

10 -- 1.0920e-007

11 -- 1.1450e-008

12 -- 1.1096e-009

13 -- 9.9943e-011

14 -- 8.4074e-012

 0 -- 7.20e-005

 1 -- 8.20e-005

 2 -- 8.40e-005

 3 -- 8.40e-005

 4 -- 8.60e-005

 5 -- 1.22e-004

 6 -- 1.54e-004

 7 -- 1.82e-004

 8 -- 2.06e-004

 9 -- 2.68e-004

10 -- 3.24e-004

11 -- 3.80e-004

12 -- 4.36e-004

13 -- 4.85e-004

14 -- 5.40e-004

 0 -- 1.0000

 1 -- 1.1389

 2 -- 1.1667

 3 -- 1.1667

 4 -- 1.1944

 5 -- 1.6944

 6 -- 2.1389

 7 -- 2.5278

 8 -- 2.8611

 9 -- 3.7222

10 -- 4.5000

11 -- 5.2778

12 -- 6.0556

13 -- 6.7361

14 -- 7.5000

0 -- 7.1946e-001

1 -- 4.1326e-001

2 -- 1.5894e-001

3 -- 4.6945e-002

4 -- 1.1637e-002

5 -- 3.3777e-003

6 -- 7.5424e-004

7 -- 1.3876e-004

8 -- 2.1819e-005

9 -- 3.5589e-006

10 -- 4.9141e-007

11 -- 6.0433e-008

12 -- 6.7195e-009

13 -- 6.7322e-010

14 -- 6.3056e-011

6. Average Throughput
For some applications, real time audio or video streaming for

example, it is worst case throughput that is important . For other

applications like writing to or reading from a thumb drive perhaps it

is average throughput that is important. It would seem that software

encoding and decoding is most applicable when it is average

throughput that is important and the throughput requirement is

modest. However when adequate buffering is available and

©2010 Neal Glover Page 11 of 13

ChannelScience

adequate delay is allowed then software encoding and decoding may

work for some streaming applications as well.

An elastic buffer can be used for streaming applications. The buffer

would hold both corrected and uncorrected sectors. The average

correction speed would be faster than the speed of moving sectors

from the buffer to the streaming application. Normally most of the

sectors in the buffer would be corrected sectors. But, if a sector is

encountered that has lots of errors then the ratio of corrected sectors

to uncorrected sectors would decrease until correction of the

problem sector is complete. Then the ratio would increase again

until again the buffer contains mostly corrected sectors. The buffer

should be large enough so that the supply of corrected sectors is not

exhausted during the correction of a sector with the maximum

number of errors. The size of the buffer determines the delay in

delivering data to the streaming application.

7. Measuring Throughput Times
The FastBchEnDecR300 software incorporates features that

facilitate timing measurements. If you choose to bypass encode, the

time measurement will apply to decode only. The measurement will

be more accurate if you choose not to compare the decoded

codeword with the original codeword. To measure encode time, run

the program with and without encode and subtract the measured

times. If you are given the option, do not choose to generate

random data and do not choose to compare.

8. Hybrid Binary BCH Decoders
The decode functions of “FastBchEnDecR300” can be used in

hybrid binary BCH decoders as well as in software decoders.

There are two techniques for implementing a hybrid binary BCH

decoder. With the first technique, read remainder computation is

performed in hardware and syndrome computation and error

correction are performed in software or firmware. With the second

technique, read syndrome computation is performed in hardware

and only error correction is performed in software of firmware.

The second technique is faster. The decoding speed of Hybrid

BCH decoders is between that of hardware decoders and that of

software decoders.

In a hybrid implementation, if it is only the remainder that is

computed in hardware on decode, the zero error decode time of

Table 1 would be subtracted from all decode times. So, for the

example employing Table 1, the improvement in average decode

Use Elastic
Buffer for
Streaming

©2010 Neal Glover Page 12 of 13

ChannelScience

time would be almost four to one. The improvement would be even

greater if syndromes were computed in hardware.

9. Managing Errors
In many error correction systems errors are managed. The

frequency of correctable error events in each sector may be

monitored to see if errors are repeating. If errors are repeating then

the sector may be rewritten and if the errors persist then the sector

may be retired in some way. An alternative strategy would be to

allow a few errors, say one or two, to exist in any sector and when a

greater number of errors exist in a sector and persist after a rewrite

then to retire the sector. Of course ideally all this would be done

before the error situation for the sector becomes severe enough for

the sector to become uncorrectable.

10. Conclusions
Software encoding and decoding of binary BCH codes is possible

for a range of throughput requirements. The FastBchEnDecR300

software implements several features that extend the range of

software encoding and decoding throughput by increasing encoding

and decoding speed. Perhaps software encoder/decoders are most

applicable to non-streaming applications but may be applicable for

some streaming applications if a suitable elastic buffering strategy is

employed.

When errors occur at random intervals and the probability

distribution for the number of bits between errors can be

approximated by a normal probability distribution, the error free

decode time is likely to be the dominate contributor to average

decoding time. The time to decode an error free sector can be

reduced by using a hybrid strategy where encoding and syndrome

computation are performed in hardware and all other decoding

functions are performed in software.

A future release of the software will introduce a new faster root

finder. This will reduce worst case decode time significantly.

Another future release will further reduce the error free decoding

time.

New Releases
Coming

©2010 Neal Glover Page 13 of 13

ChannelScience

11. References
1) N. Glover and T. Dudley, Practical Error Correction Design for Engineers - Revised

Second Edition, Cirrus Logic, 1991.

2) ChannelScience web site www.ChannelScience.com – FREE downloadable software:

FastBchEnDecR300.

About the Author
Neal Glover was a driver in moving the hard disk drive industry to more powerful error

correction codes in the early 1990s. He has been interested in the practical application of

error correcting codes for more than 30 years.

Neal has taught short courses on the subject and holds a number of patents in the field.

He started two small businesses to provide error correction products and services to the

magnetic and optical storage industries.

He enjoys programming in MATLAB® and "C" and has developed an extensive finite

field function library for prototyping error correction algorithms in MATLAB®.

http://www.channelscience.com/

