
 ©2010 Neal Glover

7300 Cody Court (972) 814-3441 Voice
Plano TX 75024-3837 USA (972) 208-9095 FAX
connect@ChannelScience.com

ChannelScience

 Detecting the Future of Data Storage SM

Extending the Life

of Software BCH

Encoders and

Decoders

For Flash Memory Applications

A ChannelScience White Paper

Written by

Neal Glover
August 9, 2010

EXTENDING THE LIFE OF BCH
Software Encoders and Decoders in Flash Memory Applications

© 2010 Neal Glover ChannelScience Page 2 of 7

Table of Contents
1. Executive Summary ... 2
2. Overview ... 3
3. Design Features ... 3
4. Overview of the Berlekamp Trace Algorithm (BTA).. 5
5. Hybrid BCH Systems .. 5
6. Conclusion ... 5
7. References ... 6
About the Author ... 7

1. Executive Summary

It may be possible to extend the life of software and hybrid BCH systems for Flash

memory by using advanced encoding and decoding methods to increase speed.

Disclaimer
The information in this white paper is provided as is. The author and ChannelScience assume no responsibility or liability of any kind

for the accuracy or completeness of the information, the way in which the information is used, its fitness for any particular task, or for
any direct or consequential damages resulting from its use. The trademarks mentioned herein are the property of their respective

owners.

© 2010 Neal Glover Page 3 of 7

ChannelScience

2. Overview
The throughput rate of BCH encoding and decoding must increase

as the throughput rate for a device increases and BCH throughput

rate must be maintained as the number of errors per sector

increases with density and sector length increases. For a software

BCH code implementation, performance is influenced by encode

speed and decode speed with and without errors. If errors are

relatively rare, performance is dominated by encode speed and

error free decode speed. The error correction time for more than a

few errors is typically dominated by syndrome computation and

root finding. Syndrome computation time can be reduced by first

computing a remainder and then computing syndromes from the

remainder. Root finding time can be reduced by using root finders

that are faster than the well known classical Chien search.

A new free “C” language software program will soon be posted on

the ChannelScience web site [6] (“C” project

“FastBchEnDecR400”). This program contains fast “C” functions

for a flexible programmable software binary BCH encoder and

decoder. Speed is achieved by implementing fast encoding, fast

error free decoding, and fast error correction. Encoding speed is

achieved by using an encode table to implement a parallel encoder.

The parallel approach accomplishes the equivalent of shifting a

shift register eight shifts at a time by fetching one vector from the

encode table. To be clear, eight shifts at a time are accomplished

regardless of finite field size.

3. Design Features
Fast error free decoding on read is accomplished by using the same

encode table and parallel approach to compute a remainder. If the

remainder is all zeros then it is assumed that no errors exist and

decoding is complete. If the remainder is nonzero then syndromes

are computed from the remainder and error correction is

performed. For t=14 (t is the maximum number of errors

correctable by the code) and GF(2^14) this BCH code software can

decode 1024 byte (plus redundancy) error free sectors at the

approximate average rate of 14,035 sectors per second on a 2.67

GHz i7 920 processor.

For Windows based applications that run on a standard PC and

where lots of memory is available a further speedup for encoding

Free BCH source
code will soon be

posted.

© 2010 Neal Glover Page 4 of 7

ChannelScience

and error free decoding is possible by processing more than eight

bits in parallel by using an even larger table.

Since root finding time is a dominate contributor to error

correction time, error correction speed can be increased by

implementing fast root finders. The “C” project

“FastBchEnDecR400” offers an option for selecting between two

root finders. The first is a fast Chien search. The second is the

Berlekamp Trace Algorithm (BTA)[1,2,3,5]. The BTA Algorithm

is much faster but also more complicated than the fast Chien

search.

One measure of speed for a root finding method is the number of

multiplies required by the algorithm. The two root finders of

“FastBchEnDecR400” were compared and the results are listed in

Table 1 below.

Table 1. Average Number of Finite Field Multiplications Required for the Berlekamp Trace

Algorithm (BTA) Root Finder and for a Fast Chien Search

 512 Data Bytes

(t=14, m=13)

1024 Data Bytes

(t=14, m=14)

1024 Data Bytes

(t=25, m=14)

BTA

Finite field add count 2,488 2,131 6,362

Finite field multiply count 2,727 2,267 6,710

Fast Chien search

Finite field add count 27,461 53,123 103,500

Finite field multiply count 27,461 53,123 103,500

Based on the number of multiplies required, the speed performance

of the BTA root finder is already very impressive. However, for a

software or firmware implementation a further performance

improvement can be achieved by using large tables in memory to

speed up the multiplies. Large tables may be acceptable for some

device applications. For applications that run on a Windows based

PC, the tables can be even larger for an even greater speedup.

However, the speedup we get by using large tables for the

multiplies of BTA is not nearly as great as the speedup we get by

switching from the Chien search to the BTA algorithm in the first

place.

Other fast root finding methods are known. Special very fast root

finding algorithms for error locator polynomials of degree one

through six are known. Other fast algorithms for finding the roots

Root-finding time
is the dominate
contributor to

error correction

time.

The speedup seen
by using large

look-up tables is
not nearly as

great that seen by
switching from

the Chien search

to the BTA.

© 2010 Neal Glover Page 5 of 7

ChannelScience

of error locator polynomials of arbitrary degree are also known.

Some are limited to very special finite fields. The BTA algorithm

is the fastest root finding algorithm for arbitrary degree

polynomials that I have implemented.

4. Overview of the Berlekamp Trace Algorithm (BTA)
The BTA as defined by Berlekamp, splits the polynomial to be

factored into two factors using a polynomial greatest common

divisor (gcd) function. Each resulting factor is also split into two

factors and so on until there exist only degree one factors. To split

a polynomial the greatest common divisor function is performed

on the polynomial and a trace polynomial that has as its roots about

half the elements of the finite field employed.

It is faster to stop splitting when the degree of a factor falls below a

threshold and instead to find the roots of such factors by even

faster methods for low degree polynomials. In

“FastBchEnDecR400” I stop splitting at degree four for even “m”

(“m” or GF(2^m)) and at degree two for odd “m”. I am currently

using special root finding algorithms for linear, quadratic, cubic

and quartic polynomials. Perhaps more time could be squeezed

out of root finding by stopping the splitting process at degree six or

less by using special root finding algorithms for quintic and sextic

polynomials as well.

5. Hybrid BCH Systems
In hybrid BCH systems, write encoding and read remainder

computation are performed in hardware and syndrome

computation and error correction are performed in software or

firmware. In an alternative strategy, write encoding and read

syndrome computation are performed in hardware and only error

correction is performed in software of firmware. Hybrid BCH

systems are used when software BCH systems are not fast enough.

In either hybrid strategy, software error correction must be very

fast and therefore the BTA root finder algorithm is a good match.

A software Chien search would be too slow for many hybrid BCH

systems.

6. Conclusion
The algorithms implemented within the free “C” project

“FastBchEnDecR400” show that it is possible to achieve

significant speed in a software binary BCH code encoder and

Stop splitting
polynomial

factors when the
degree of a factor

falls below a
threshold

© 2010 Neal Glover Page 6 of 7

ChannelScience

decoder. This code set achieves speed by using a large table to

accomplish parallel encoding and remainder generation and by

using the BTA algorithm for fast root finding.

It may be possible to extend the life of software and hybrid BCH

systems for flash memory by using functions such as those

implemented in the free “C” project “FastBchEnDecR400” [6].

7. References
My references for the BTA algorithm are a paper [5] by Berlekamp

and three papers [1,2,3] that discuss a BTA derivative algorithm

called BTZ. In the “FastBchEnDecR400” program I implemented

much of the math from BTZ, but instead of implementing the

special root finding methods of low degree polynomials by

Zinoviev, I implemented alternative methods. References [1-5]

can be found on the internet, but there may be a fee for some of

them.

Windows is a registered trademark of Microsoft Corporation in the

United States and other countries.

1. V. Herbert. Efficient root finding of polynomials over fields of

characteristic 2, WEWoRC 2009, INRIA Paris-Rocquencourt.

2. V. Herbert. Efficient root finding of polynomials over fields of

characteristic 2, INRIA Paris-Rocquencourt.

3. B. Biswas, V. Herbert. Efficient root finding of polynomials

over fields of characteristic 2, CRI INRIA Paris-Rocquencourt.

4. V.A. Zinoviev. On the solution of equations of degree 10 over

finite fields GF(2^q). In Rapport de recherche INRIA 2829, 1996.

5. E. Berlekamp (1970), Factoring polynomials over large finite

fields, Mathematics of Computation, v. 24, 1970, pp. 713-735.

6. ChannelScience web site www.ChannelScience.com – FREE

downloadable software: FastBchEnDecR400.

7. N. Glover and T. Dudley, Practical Error Correction Design for

Engineers - Revised Second Edition, Cirrus Logic, 1991.

Register at
www.ChannelScience.com
to be notified of availability
of FREE C source code for

BCH ENDECs.

http://www.channelscience.com/
http://www.channelscience.com/

© 2010 Neal Glover Page 7 of 7

ChannelScience

About the Author
Neal Glover was a driver in moving the hard disk drive industry to more powerful error

correction codes in the early 1990s. He has been interested in the practical application of

error correcting codes for more than 30 years.

Neal has taught short courses on the subject and holds a number of patents in the field.

He started two small businesses to provide error correction products and services to the

magnetic and optical storage industries.

He enjoys programming in MATLAB® and "C" and has developed an extensive finite

field function library for prototyping error correction algorithms in MATLAB®.

