
 
  

 

Fast Software BCH 
Encoder and 

Decoder
-FastBchEnDecR400-

 

Compute
Syndromes

Berlekamp-
Massey

BTA -Berlekamp
Trace

Algorithm

FIFO +
Corrected CW BitsRaw CW Bits

A ChannelScience White Paper 
 
 
Written by 

Neal Glover 
October 10, 2011 

ChannelScience 
  Detecting the Future of Data Storage SM  

7300 Cody Court (972) 814-3441 Voice 
Plano TX 75024-3837 USA (972) 208-9095 FAX 
connect@ChannelScience.com 

©2011 Neal Glover  Page 1 of 21 



 
 ChannelScience 

 
Table of Contents 

1. Executive Summary............................................................................................................... 2 
2. Introduction ........................................................................................................................... 3 
3. Binary BCH Codes................................................................................................................ 3 
4. Design Overview................................................................................................................... 7 
5. Root Finding.......................................................................................................................... 8 
6. Error Correction Time ......................................................................................................... 13 
7. Average Throughput............................................................................................................ 17 
8. Measuring Throughput Times ............................................................................................. 18 
9. Hybrid Binary BCH Decoders............................................................................................. 18 
10. Managing Errors................................................................................................................ 18 
11. Conclusions ....................................................................................................................... 19 
12. References ......................................................................................................................... 20 
About the Author..................................................................................................................... 21 
 
 
 
 

 

 

 

 

 

 

1. Executive Summary 
 
 
Software encoding and decoding of binary BCH codes is possible for a range of 
throughput requirements.  By carefully selecting the strategy and algorithms for encoding 
and decoding, this range can be extended.  Such an implementation has been posted on 
the ChannelScience web site, www.ChannelScience.com, as a Visual Studio “C” project 
FastBchEnDecR400, hereafter called R400.  The implementation of this software and its  
capabilities are discussed herein. 
 
 
Disclaimer 
The information in this white paper is provided as is. The author and ChannelScience assume no responsibility or liability of any kind 
for the accuracy or completeness of the information, the way in which the information is used, its fitness for any particular task, or for 
any direct or consequential damages resulting from its use. The trademarks mentioned herein are the property of their respective 
owners 

© 2011 Neal Glover  Page 2 of 21 

http://www.channerscience.com/


 
 ChannelScience 

 
 

2. Introduction  
 
The purpose of this document is to give an overview of the fast 
encoder-decoder software R400.  And also to convey at a high 
level some insight into the binary BCH codes and the classical 
algorithms for encoding and decoding them.   For detailed 
information on encoding and decoding algorithms monitor the 
www.ChannelScience.com web site for new postings. 
  

Flexible 
Encoder 

and 
Decoder 

R400 is a flexible binary BCH code encoder and decoder.  It 
supports most binary BCH codes of practical interest.  It supports 
“m” of GF(2m) from six to sixteen and it supports “t”, the 
maximum number of errors correctable by the code, from one to 
sixty-four.  The “C” project can be found at 
www.ChannelScience.com/ecc.html.   
 
The program can be launched by double clicking the “exe” file that 
is part of the “C” project.  All parameters and options are entered 
at the keyboard.  The program prompts for all inputs and provides 
information to help with the entry of parameters and the selection 
of options.  It should be possible to double click the “exe” file and 
use the program without having to refer to the source code.  
 
The source code listing should have enough comments to enable an 
experienced programmer to use the functions as a design reference. 
 

3. Binary BCH Codes 
Binary BCH codes are random bit error correcting codes.  The 
coefficients of the codeword polynomial are from the finite field of 
two elements GF(2), but the computation used by the error 
correction algorithms is performed over a larger finite field, 
GF(2m) .  The code generator polynomial for a binary BCH code is 
the least common multiple of a set of minimum polynomials.  Two 
of the parameters for a binary BCH code are “m” and “t”.  The 
“m” parameter is “m” of GF(2m) and it is determined by the 
number of data bits that must be supported by the code.  The “t” 
parameter is the maximum number of bit errors that are to be 
correctable by the code.  Binary BCH codes are generally preferred 
over Reed-Solomon codes when the errors seen by the code are 
random bit errors. 

Binary BCH 
Preferred if 
Bit Errors 

 

© 2011 Neal Glover  Page 3 of 21 

http://www.channelscience.com/
http://www.channelscience.com/ecc.html


 
 ChannelScience 

The classic encoding of a binary BCH code is accomplished with a 
bit-serial shift register  similar to the simple shift register shown in 
Figure 1. 
 

     
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
In the encoder circuit of Figure 1 the  (0 or 1) are coefficients of 
the code generator polynomial.  On encode the Redun_Time signal 
is initially low and the circuit pre-multiplies the data polynomial 
by x

ic

n-k and divides by g(x), the code generator polynomial.  When 
the Redun_Time signal goes high the remainder (redundancy) is 
output behind data.  
 

© 2011 Neal Glover  Page 4 of 21 



 
 ChannelScience 

Classical decoding of binary BCH codes is illustrated in Figure 2. 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Figure 2 
 
Three steps are required.  The first step is syndrome computation.  
The second step is the computation of an error locator polynomial.  
This step is accomplished with an algorithm such as the 
Berlekamp-Massey algorithm or Euclids algorithm.  The third step 
finds the roots of the error locator polynomial.  The classical 
algorithm for the root finding step is the Chien Search, but other 
root finding algorithms exist, such as the BTA (Berlekamp Trace 
Algorithm) which is incorporated in R400. 

Three 
Steps to 
Decode 

 
Equation (1) is the equation for syndrome computation.   There are 
several methods for implementing this equation.  Each is a trade 
off between resources and speed. 
 
 
 
 
 
 
 
 
 
 
 
 

© 2011 Neal Glover  Page 5 of 21 



 
 ChannelScience 

 
 
Algorithm 1 shows pseudo code for one version of the classical 
Berlekamp-Massey algorithm for binary BCH codes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1 

© 2011 Neal Glover  Page 6 of 21 



 
 ChannelScience 

Algorithm 2 shows one version of the classical Chien 
search algorithm. 
 

 

 

 

 

 

 

 

 

 

 
     Algorithm 2 

4. Design Overview 
The R400 software incorporates several features that increase 
throughput by increasing the speed of encoding and decoding.  
Encoding speed is increased by building the binary redundancy 
vector in the bits of a set of 32 bit words to minimize the number 
of operations.  Encoding speed is further increased by processing 
eight data bits at a time.  The software that accomplishes this 
performs a function equivalent to that performed by a parallel 
hardware shift register.  A large encode table facilitates this 
process.  Shifting the current estimate of the binary redundancy 
vector by eight bits and XORing with it one vector (one set of 32-
bit words) from the encode table accomplishes the equivalent of 
eight shifts of a bit-serial hardware shift register or one shift of an 
eight-bit parallel hardware shift register. 

Faster 
Encoding and 

Decoding 

For Speed 
Compute a 
Remainder 

First 

 
Decoding speed is increased by first computing a remainder and 
then if the remainder is nonzero, computing syndromes from the 

© 2011 Neal Glover  Page 7 of 21 



 
 ChannelScience 

remainder.  The remainder is computed in the same way that the 
redundancy is computed for encoding.  Eight data bits are 
processed at a time and the same large encode table is used to 
emulate the action of a parallel hardware shift register.  The fast 
computation of a remainder is essential for achieving significant 
throughput for the error free case. 
 
On decode, if the remainder is nonzero, syndromes are computed, 
then an error locator polynomial is computed and its roots are 
found.  One of the techniques used by the software to speed up 
syndrome computation is computing even syndromes from odd 
ones  This is not possible for all codes but it is possible for a binary 
BCH code. 
 

5. Root Finding 
 
In R400, root finding is accomplished with either a fast Chien 
search or with the BTA (Berlekamp Trace Algorithm).  For some 
parameter sets of practical interest the BTA algorithm is much 
faster than the Chien search.  But for others the Chien search is 
faster. 
  
In R400 the speed of the fast Chien search is increased by working 
with the logs of coefficients of the error locator polynomial, by 
avoiding “mod” operations, and by dividing down the error locator 
polynomial each time a root is found.  Speed is also increased by 
exiting the Chien search when there are only a few roots left to 
find.  The exit occurs when the degree of the error locator 
polynomial reaches four for even “m” and when the degree reaches 
two for odd “m”.  After the exit, special algorithms are used to find 
the remaining roots.   

Divide 
Down for 
Speed 

 
Speed of the fast Chien search is further increased by unrolling 
(straight line coding) the tightest loop.  When a loop is unrolled the 
contents of the loop are replicated to eliminate loop overhead.  If 
the number of times the body of the loop is executed changes 
dynamically, the code branches down into the replications to 
achieve the equivalent of looping the loop body the correct number 
of times. 

Unroll Chien 
Search Loop 

for Speed 

 

© 2011 Neal Glover  Page 8 of 21 



 
 ChannelScience 

Consider the example of unrolled code in Algorithm 3.  It 
evaluates ( )Xσ  at kα  using Horner’s method. 
  
 

 
 
 
 
 
 
 
 
 
 
 

Algorithm 3 
 

At the end of the unrolled loop, y contains σ(x) 
evaluated at αk. 
 
One additional Chien search speedup is used.  If the error locator 
polynomial has no zero coefficients then a test for zero is not 
performed on each coefficient at each step of the Chien search.  
The test to determine if there are any zero coefficients in the error 
locator polynomial is performed initially and after each divide 
down operation. 
 
R400 also incorporates a BTA root finding algorithm.  The BTA 
was first described by Berlekamp around 1970 [5].  The  algorithm 
as defined by Berlekamp, splits the polynomial to be factored into 
two factors using a polynomial greatest common divisor (gcd) 
function.  Each resulting factor is also split into two factors and so 
on until there exist only degree one factors.  To split a polynomial 
the greatest common divisor function is performed on the 
polynomial and a trace polynomial that has as its roots about half 
the elements of the finite field employed.   

Stop splitting 
polynomial factors 
when the degree of 
a factor falls below 

a threshold 

 
It is faster to stop splitting when the degree of a factor falls below a 
threshold and instead to find the roots of such factors by even 
faster methods for low degree polynomials. In R400 the splitting is 
stopped at degree four for even “m” (“m” or GF(2m)) and at degree 
two for odd “m”.  Currently special root finding algorithms are 

© 2011 Neal Glover  Page 9 of 21 



 
 ChannelScience 

used for linear, quadratic, cubic and quartic polynomials. Stopping 
the splitting at degree four or less for both odd and even m would 
speed up root finding.  A further speed improvement could be 
obtained by stopping the splitting at degree six or less by using 
special fast root finding algorithms for quintic and sextic 
polynomials as well.  Such algorithms are known.  An example 
algorithm is described in [8]. It can be used to find the roots of 
both quintic and sextic polynomials. 
 
Key to the operation of BTA is the fact that the trace polynomial 

has as its roots about half the elements of the finite field.  So 
performing the gcd function on the polynomial to be factored and 
the trace polynomial has a good chance of splitting the polynomial 
to be factored.   Performing the same gcd function on 

( )Tr x

( )kTr xβ  and 
the polynomial to be factored may split the polynomial differently.  

kβ  is an element of the basis of the field.  In practice kβ  is 
different for the subsequent splits of a polynomial.   Lets say that 

1β is used to split the original polynomial then each factor resulting 
from the split is again split using 2β  and so on.  

Trace 
Polynomial 

Is Key 

 
Two steps 

of gcd 
The computation of a gcd can be divided into two steps.  The first 
step computes a residue by computing the larger polynomial mod 
the smaller polynomial and then the second step computes the gcd 
of this residue and the smaller polynomial.  This is done in the  
R400 implementation of the BTA algorithm. 
 
For GF(2m) the trace polynomial of x  has the following form, 
 

1 3 2 12 2 2 2...
m 02x x x x x
−

+ + + + + . 
 
Note that all powers of x are powers of 2. 
 
The trace polynomial for k xβ  has the form, 
 

1 1 3 3 2 2 1 1 02 2 2 2 2 2 2 2 2 2...
m m

k k k k

0

kx x x xβ β β β
− −

+ + + + + xβ

)

. 
 
In our implementation of BTA we first compute  
 

( ) (kTr x mod p xβ , 

© 2011 Neal Glover  Page 10 of 21 



 
 ChannelScience 

 
 
where p(x) is the polynomial to be factored.  So we compute 
 

1 1 3 3 2 2 1 1 0 02 2 2 2 2 2 2 2 2 2( ... ) ( )
m m

k k k k kx x x x x mod pβ β β β β
− −

+ + + + + x  
 
This is computed by computing each term mod p(x) and summing 
the results.  To compute the residue mod p(x) of the example term 
 

3 32 2
k xβ , 

 
first compute the residue of  
 

32( ) ( )x mod p x  
 
and then multiply the resulting vector by 

32
kβ  to get 

 
3 32 2( ) (k )x mod p xβ . 

 
So compute and retain the residues for each term of  . Then 
multiply each residue vector by a function of 

( )Tr x

kβ and sum the 
results to get the residue of   
 

( )( )kTr x mod p xβ  for a particular value of k. 
 
The residues of terms whose powers of x are powers of 2 can be 
computed by repeated squaring, for example 
 

3 22 2 2( ) ( ) (( ) ( )) ( )x mod p x x mod p x mod p x=  
 
Algorithm 4 is a high level representation of the BTA algorithm 
implemented in  R400.  
 
 

© 2011 Neal Glover  Page 11 of 21 



 
 ChannelScience 

( )

// ( )
// ( )
//
//
//
// ( ( ))

( ( ))

k

k k

BerlekampTrace Algorithm BTA
p x is Error Locator Polynomial
k is k of T
j is pointer toentry of FactorTbl to be further factored
n is pointer to next entry of FactorTbl to be filled
T Tr x mod p x

function BTA p x
f

β=

1
2 2

0

1:

( mod ( ))

//
1; 1;

(1) ( );
(1) 1;

( ) ( );
deg( ( )) 4

, , , ;

( );
( ) gcd( ( ), );
( ) ( ) / ( );

j j
m

k k
j

k

or k m

T x p x

end

j n
FactorTbl p x
kTbl
while j n

f x FactorTbl j
if f x

call quartic cubic quatratic or linear
else

k kTbl j
g x f x T
h x f x g x
Fac

β
−

=

=

=

= =
=

=
<
=

≤

=
=

=

∑

( ) ( );
( ) 1; 1;

( ) ( );
( ) 1; 1;

1;

torTbl n g x
kTbl n k n n
FactorTbl n h x
kTbl n k n n

end
j j

end
return

end

=
= + = +

=
= + = +

= +

 

Algorithm 4 

© 2011 Neal Glover  Page 12 of 21 



 
 ChannelScience 

For simplicity, the pseudo code for Algorithm 4 shows pre-
computing of all the  vectors.  In practice it is faster to compute 
each when it is needed the first time.  Once a  is computed, it 
should be saved for possible use again.  Referring to the Algorithm 
4 pseudo code, the vectors 

kT

kT kT

2 ( )
j

x mod p x  should be computed just 
once per error case, but will be used up to m times in computing 
the vectors. kT
 

6. Error Correction Time 
 
In this section the speed of error correction for R400 will be 
discussed. The two root finders of R400 are compared using 
several speed measures.  Table 1 compares the number of finite 
field multiplies and adds required for decoding three particular 
cases.  Table 2 compares root finding time (only) for three cases.  
Table 3 compares total decode time for three cases.   
 
The number of multiplies and adds for Table 1 were measured in 
MATLAB® simulators.  The timings in Table 2 were measured 
using a standalone “C” implementation of the algorithms.  The 
timings for Table 3 were measured using R400 itself. 
 
From Table 1 you can see that the finite field multiply and add 
counts only provide a rough indication of the speed difference 
between the two root finders.  From Table 2 you will see that when 
it is only the root finding times that are compared, the timing 
differences are significant.  But this large difference does not 
translate directly into an as large a difference in total decode time.  
See Table 3.  This is because root finding is not the only 
contributor to total decode time.  Still Table 3 does show that there 
is a significant speed benefit to using the BTA instead of the fast 
Chien search for particular parameter sets when the application 
must be designed to make error correction fast for the maximum 
number of errors that are correctable.   
 

© 2011 Neal Glover  Page 13 of 21 



 
 ChannelScience 

Table 1. Average Number of Finite Field Multiplies and Adds Required just 
for Root Finding using the BTA Root Finder and using a Fast Chien Search.  
For each case there are t random errors 

 
 512 Data  

Bytes 
(t=14, m=13)

1024 Data  
Bytes       
(t=14, m=14) 

1024 Data  
Bytes 
(t=25, m=14) 

1024 Data 
Bytes 
(t=40, m=14)

BTA     
Finite field add count 2,488 2,131 6,362 16,002 
Finite field mult count 2,727 2,267 6,710 16,780 

Fast Chien search     
Finite field add count 27,461 53,123 103,500 175,040 
Finite field mult count 27,461 53,123 103,500 175,040 

 
 

Table 2.  Time just for root finding for 100,000 polynomials using the BTA  
root finder and using a fast Chien search root finder.  In each case the degree 
of the polynomial is equal to t and the roots are at random locations.  The 
roots may take on any of the possible finite field values.  Times are for a 2.67 
GHz i7 920 processor 
   

 
 (t=14, m=13) (t=14, m=14) (t=25, m=14) (t=40, m=14)
BTA     

Time to find roots 4.1 Seconds 3.4 Seconds 9.8 Seconds 23.9 Seconds
     
Fast Chien search     

Time to find roots 42 Seconds 87 Seconds 188 Seconds 317 Seconds
 

Table 3. Time for 100,000 full decodes using the BTA root finder and using  
a fast Chien search root finder.  For each decode the number of errors 
simulated is equal to t.  Times are for a 2.67 GHz i7 920 processor 

 
 512 Data  

Bytes 
(t=14, m=13)

1024 Data  
Bytes       
(t=14, m=14) 

1024 Data  
Bytes 
(t=25, m=14) 

1024 Data 
Bytes 
(t=40, m=14)

BTA     
Total decode time 9 Seconds 13 Seconds 25 Seconds 55 Seconds 

     
Fast Chien search     

Total decode time 27 Seconds 54 Seconds 116 Seconds 203 Seconds
 
 
 

© 2011 Neal Glover  Page 14 of 21 



 
 ChannelScience 

 
 
 
 
In most applications few errors are more likely than many.  And if 
errors are random and the probability that a bit is in error is the 
same for all bits then it would be very rare to have, in a sector, the 
maximum number of errors supported by the error correcting code.  
In most applications we will see mostly error free sectors and a few 
sectors with one error and fewer still sectors with two errors and so 
on.  It will be very rare to see the maximum number of errors.  So 
in most cases the error free decode time has the most influence on 
average decode time. 

Error Free Decode 
Time Dominates 
Average Decode 

Time 
 
This can be put in perspective with tables 4 and 5.  Table 4 
assumes that the fast Chien search is used for root finding and 
Table 5 assumes that the BTA algorithm is used for root finding.  
If we are using a binary BCH code and we have 1024 data bytes in 
each sector and t=14 and m=14 then there would be about 8388 
bits in each codeword.   If we want our uncorrectable error rate to 
be less than 1.E-15 (uncorrectable sectors per bit) then for our 
given parameters the raw error rate must be less than 1.5152 E-4 
(bit errors per bit).   
 
Assume that this is precisely the raw error rate, then the probability 
for each number of errors (0 to 14) in a sector is given in column 1 
of tables 4 and 5 (units are events per sector).  Column 2 lists, for 
the parameters given above, the decode time in seconds for a 2.67 
GHz i7 920 processor.  Column 3 lists the decode times 
normalized to the decode time for the zero error case.   
 
Now we can multiply the frequency of occurrence (column 1) 
times the decode time, normalized to the time to decode the zero 
error case (column 3), for each number of errors to get the 
contribution of each to the normalized average decode time.  The 
results are given in column 4.  From column 4 it can be seen that, 
for this example, the zero error case is the largest contributor to 
average decode time.  The next largest contributor is the one error 
case and so on.   
 
The sum of these contributions is the average decode time, 
normalized to the time to decode the zero error case.  The sum is 
1.3545 for Table 4 and 1.3667 for Table 5.  So, for this example, 
the average decode time is only about 35% higher than the time to 
decode the zero error case.  And this is true for both the fast Chien 

© 2011 Neal Glover  Page 15 of 21 



 
 ChannelScience 

search and the BTA algorithm.  However the average decode time 
for the correction of the maximum number of errors correctable by 
the code (14 in this case) is much greater for the Chien search.  It is 
5.40e-4 for the Chien search and only 1.24e-4 for the BTA 
algorithm.  So for the parameters that we have assumed, if the 
decoding needs to be fast for each correctable error, as would be 
the case for a worst case optimized system, then the BTA 
algorithm is a better solution. 
 
 
 
Table 4 - Fast Chien Search Root Finder 

 
Probability of 
given number of 
errors in a sector 

Decode time in 
seconds 

Normalized 
decode time 

Contribution to 
Normalized 
average decode 
time  

0 -- 7.1946e-001  
1 -- 3.6286e-001  
2 -- 1.3624e-001  
3 -- 4.0239e-002  
4 -- 9.7427e-003  
5 -- 1.9934e-003  
6 -- 3.5263e-004  
7 -- 5.4895e-005  
8 -- 7.6259e-006  
9 -- 9.5612e-007  
10 -- 1.0920e-007  
11 -- 1.1450e-008  
12 -- 1.1096e-009  
13 -- 9.9943e-011  
14 -- 8.4074e-012  
 

 0 -- 7.20e-005  
 1 -- 8.20e-005  
 2 -- 8.40e-005  
 3 -- 8.40e-005  
 4 -- 8.60e-005  
 5 -- 1.22e-004  
 6 -- 1.54e-004  
 7 -- 1.82e-004  
 8 -- 2.06e-004  
 9 -- 2.68e-004  
10 -- 3.24e-004  
11 -- 3.80e-004  
12 -- 4.36e-004  
13 -- 4.85e-004  
14 -- 5.40e-004 

 0 -- 1.00  
 1 -- 1.14  
 2 -- 1.17 
 3 -- 1.17 
 4 -- 1.19 
 5 -- 1.69  
 6 -- 2.14  
 7 -- 2.53  
 8 -- 2.86  
 9 -- 3.72  
10 -- 4.50  
11 -- 5.28  
12 -- 6.06  
13 -- 6.74  
14 -- 7.50 

0 -- 7.19e-001  
1 -- 4.13e-001  
2 -- 1.59e-001  
3 -- 4.69e-002  
4 -- 1.16e-002  
5 -- 3.38e-003  
6 -- 7.54e-004  
7 -- 1.39e-004  
8 -- 2.18e-005  
9 -- 3.56e-006  
10 -- 4.91e-007  
11 -- 6.04e-008  
12 -- 6.72e-009  
13 -- 6.73e-010  
14 -- 6.31e-011 
 
 

© 2011 Neal Glover  Page 16 of 21 



 
 ChannelScience 

 
 

Table 5 - BTA Root Finder 
 
Probability of 
given number of 
errors in a sector 

Decode time in 
seconds 

Normalized 
decode time 

Contribution to 
Normalized 
average decode 
time  

0 -- 7.1946e-001  
1 -- 3.6286e-001  
2 -- 1.3624e-001  
3 -- 4.0239e-002  
4 -- 9.7427e-003  
5 -- 1.9934e-003  
6 -- 3.5263e-004  
7 -- 5.4895e-005  
8 -- 7.6259e-006  
9 -- 9.5612e-007  
10 -- 1.0920e-007  
11 -- 1.1450e-008  
12 -- 1.1096e-009  
13 -- 9.9943e-011  
14 -- 8.4074e-012  
 

 0 -- 7.20e-005  
 1 -- 8.40e-005  
 2 -- 8.50e-005  
 3 -- 8.63e-005  
 4 -- 8.71e-005  
 5 -- 9.14e-005  
 6 -- 9.43e-005  
 7 -- 9.71e-005  
 8 -- 1.00e-004  
 9 -- 1.04e-004  
10 -- 1.08e-004 
11 -- 1.12e-004 
12 -- 1.16e-004 
13 -- 1.18e-004 
14 -- 1.24e-004 

0--1.00 
1--1.17 
2--1.18 
3--1.20 
4--1.21 
5--1.27 
6--1.31  
7--1.35  
8--1.39  
9--1.44  
10--1.50  
11--1.56  
12--1.61  
13--1.64  
14--1.72 

0--7.19e-001  
1--4.23e-001  
2--1.61e-001  
3--4.82e-002  
4--1.18e-002  
5--2.53e-003  
6--4.62e-004  
7--7.40e-005  
8--1.06e-005  
9--1.38e-006  
10--1.64e-007  
11--1.78e-008  
12--1.79e-009  
13--1.64e-010  
14--1.44e-011  
 

 

7. Average Throughput 
For some applications, real time audio or video streaming for 
example, it is worst case throughput that is important.  For other 
applications like writing to or reading from a thumb drive perhaps 
it is average throughput that is important.  It would seem that 
software encoding and decoding is most applicable when it is 
average throughput that is important and the throughput 
requirement is modest.  However when adequate buffering is 
available and adequate delay is allowed then software encoding 
and decoding may work for some streaming applications as well. 

Use Elastic 
Buffer for 
Streaming 

 
An elastic buffer can be used for streaming applications.  The 
buffer would hold both corrected and uncorrected sectors.  The 
average correction speed would be faster than the speed of moving 
sectors from the buffer to the streaming application.  Normally 
most of the sectors in the buffer would be corrected sectors.  But, if 
a sector is encountered that has lots of errors then the ratio of 
corrected sectors to uncorrected sectors would decrease until 

© 2011 Neal Glover  Page 17 of 21 



 
 ChannelScience 

correction of the problem sector is complete.  Then the ratio would 
increase again until again the buffer contains mostly corrected 
sectors.  The buffer should be large enough so that  the supply of 
corrected sectors is not exhausted during the correction of a sector 
with the maximum number of errors.  The size of the buffer 
determines the delay in delivering data to the streaming 
application. 
 

8. Measuring Throughput Times 
The R400 software incorporates features that facilitate timing 
measurements.  If you choose to bypass encode, the time 
measurement will apply to decode only.  The measurement will be 
more accurate if you choose not to compare the decoded codeword 
with the original codeword.  To measure encode time, run the 
program with and without encode and subtract the measured times.  
For more accurate timing measurements, if you are given the 
option, do not choose to generate random data and do not choose 
to compare. 
 

9. Hybrid Binary BCH Decoders 
The decode functions of R400 can be used in hybrid binary BCH 
decoders as well as in software decoders.  There are two 
techniques for implementing a hybrid binary BCH decoder.  With 
the first technique, read remainder computation is performed in 
hardware and syndrome computation and error correction are 
performed in software or firmware.  With the second technique, 
read syndrome computation is performed in hardware and only 
error correction is performed in software or firmware.  The second 
technique is faster.  The decoding speed of Hybrid BCH decoders 
is between that of hardware decoders and that of software 
decoders. 
 
In a hybrid implementation, if it is only the remainder that is 
computed in hardware on decode, the zero error decode time of 
table 4 and 5 would be subtracted from all decode times.   

 

10. Managing Errors  
In many error correction systems errors are managed.  The 
frequency of correctable error events in each sector may be 
monitored to see if errors are repeating.  If errors are repeating then 
the sector may be rewritten and if the errors persist then the sector 

© 2011 Neal Glover  Page 18 of 21 



 
 ChannelScience 

may be retired in some way.  An alternative strategy would be to 
allow a few errors, say one or two, to exist in any sector and when 
a greater number of errors exist in a sector and persist after a 
rewrite then to retire the sector.  Of course ideally all this would be 
done before the error situation for the sector becomes severe 
enough for the sector to become uncorrectable. 

11. Conclusions  
Software encoding and decoding of binary BCH codes is possible 
for a range of throughput requirements.  The R400 software 
implements several features that extend the range of software 
encoding and decoding throughput by increasing encoding and 
decoding speed.   
 
The BTA (Berlekamp Trace Algorithm) has been incorporated into 
R400. Root finding can be accomplished with either the BTA 
algorithm or a fast Chien search.   In systems where it is the worst 
case decode time that is important, the BTA root finding algorithm 
may give significantly better performance than the fast Chien 
search.   

BTA may give 
Better 

Performance 

 
When errors occur at random intervals and the probability 
distribution for the number of bits between errors can be 
approximated by a normal probability distribution, the error free 
decode time is likely to be the dominate contributor to average 
decoding time.  In systems where it is average decode time that is 
important then the fast Chien search root finding algorithm may be 
satisfactory. 
 
Perhaps software encoder/decoders are most applicable to non-
streaming applications but may be applicable for some streaming 
applications if a suitable elastic buffering strategy is employed. 
 

Consider 
a hybrid 
solution 

A hybrid decoding strategy has a performance between an all 
hardware decoding strategy and an all software decoding strategy.  
With a hybrid strategy, some of the decoding functions are 
performed in hardware and some are performed in software.  Many 
of the software functions of R400 can be used with a hybrid 
strategy.   
 
   

© 2011 Neal Glover  Page 19 of 21 



 
 ChannelScience 

12. References  
 
My references for the BTA algorithm are a paper [5] by Berlekamp and three papers 
[1,2,3] that discuss a BTA derivative algorithm called BTZ.  In the R400 program I 
implemented much of the math from BTZ, but instead of implementing the special root 
finding methods of low degree polynomials by Zinoviev, I implemented alternative 
methods that have been know to me for many years.  References [1-5] can be found on 
the internet, but there may be a fee for some of them. 
 
Windows is a registered trademark of Microsoft Corporation in the United States and 
other countries. 
 
1. V. Herbert. Efficient root finding of polynomials over fields of characteristic 2, 
WEWoRC 2009, INRIA Paris-Rocquencourt, 2009. 
 
2. V. Herbert. Efficient root finding of polynomials over fields of characteristic 2, INRIA 
Paris-Rocquencourt, 2008 or later. 
 
3. B. Biswas, V. Herbert. Efficient root finding of polynomials over fields of 
characteristic 2, CRI INRIA Paris-Rocquencourt, 2008 or later. 
 
4. V.A. Zinoviev. On the solution of equations of degree 10 over finite fields GF(2^q). In 
Rapport de recherche INRIA 2829, 1996. 
 
5. E. Berlekamp (1970), Factoring polynomials over large finite fields, Mathematics of 
Computation, v. 24, 1970, pp. 713-735. 
 
6. ChannelScience web site www.ChannelScience.com – FREE downloadable software: 
FastBchEnDecR400. 
 
7. N. Glover and T. Dudley, Practical Error Correction Design for Engineers - Revised 
Second Edition, Cirrus Logic, 1991. 
 
8. Cox, Hassner, Trager, and Winograd, Root solver and associated method for solving 
finite field polynomial equations, Patent US 6,792,569 B2, 2004  

© 2011 Neal Glover  Page 20 of 21 

http://www.channelscience.com/


 
ChannelScience 
 
 
 
 
 
 

About the Author 
Neal Glover was a driver in moving the hard disk drive industry to more powerful error 
correction codes in the early 1990s. He has been interested in the practical application of 
error correcting codes for more than 30 years.  
 
Neal has taught short courses on the subject and holds a number of patents in the field. 
He started two small businesses to provide error correction products and services to the 
magnetic and optical storage industries.  
 
He enjoys programming in MATLAB® and "C" and has developed an extensive finite 
field function library for prototyping error correction algorithms in MATLAB®. 

© 2011 Neal Glover  Page 21 of 21 


	1. Executive Summary
	Disclaimer

	2. Introduction 
	3. Binary BCH Codes
	4. Design Overview
	5. Root Finding
	6. Error Correction Time
	7. Average Throughput
	8. Measuring Throughput Times
	9. Hybrid Binary BCH Decoders
	10. Managing Errors 
	11. Conclusions 
	 12. References 
	About the Author

